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1. Introduction

Consider a rectangular domain D in the x-y plane in which a vector

solution to the differential equation
+ =
(1.1) Uy AUx 0

is to be obtained when certain conditions, described by a boundary
operator BA’ are prescribed on the boundary Y of D, viz., BAU =g

on Y. We assume BA is such that a well posed problem results.
01
10

2 on the side where initial conditions are prescribed, rank

The wave equation results when A = ( ) in which case rank

=)
it

[+-]
L]

0 on the opposite side, and rank BA = 1 on the remaining sides.

We recall that if

X
1

“U“i = f UT(x,y)U (x,y)dx
X

0
"~ the familiar energy estimate
(1.2) 14 y)2 + e aren] b =0
: 2 dy y ’ > X,

results by multiplying (1.1) by UT(x,y) and integrating. If the
boundary conditions are dissipative, UTAUIx > UTAUIxo so that
|_|U||y < ”U||O; as a result both existence and uniqueness can be shown
to follow.

01

For the Cauchy - Riemann equations A = (1 0) and rank . BA =1 on

all sides. 1In this case an estimate for the norm

vl = [f v'udxdy
D



in terms of boundary data can be given by introducing a potential function
and employing Green's theorem; again, uniqueness as well as existence
under rather general conditions follows.

Friedrich's theory of symmetric positive equatiomns [1] provides a
unified viewpoint for treating systems of equations without regard to
type and it is natural to inquire whether or not a more unified viewpoint
about numerical approximations is also possible.

This paper investigates a finite difference scheme for (1.1) which
is convergent for the Cauchy - Riemann equations as well as for the wave
equation. For the latter a direct parallel to the energy argument
described above is obtained. For the Cauchy- Riemann equations, a
simple argument will imply the maximum principle and its well known
consequences.

A motivation for the finite difference scheme as the consequence
of a common approximation method for both classes of problems is given
in the final section.

In the following sections we assume that the rectangular domain D
is divided into MN rectangular cells nij centered at points Pij
and each of area AxAy; Uij = U(Pij)' The finite difference scheme
we shall be primarily concerned with involves vaiues at the midpoints

of the sides of ﬂij as indicated in Figure 1.

Fi,i+1/2

by Bi1/2,3 13 Pi+v1/2,3
-J- -3
Pi,5-1/2
L ]
| Ax ]

Figure 1: An elementary cell “ij
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The finite difference equations associated with equation (1.1) in

each cell 7 are:

ij
(@) Wy 54172 " Vg 5-172) FM WUy gy 5705 1/2,9) =0
(1.3)
® U ye12 P %,5-172 % Vv as2,5 Y Vi-1/2,3

in which X = Ay/Ax. The consistency of these approximations to (1.1)
is evident.

Note that in D (1.3) express 2NM equations for the (N-1)M+ (M-1)N
unknowns at points interior to D and the 2(N+M) unknowns lying om the
boundary of D; the additional (N+M) boundary conditions for each problem
{arising from the conditions for rank BA) thus 7result in a determined

system of algebraic equations.

I1. The Wave Equation

In the case of the wave equation A 1is symmetric and an energy
estimate analogous to (1.2) results by multiplying the difference equation

(1.3a) by (@ + Ui j-l/Z)T and summing on 1i; interchanging the
b

i,j+1/2

average in the y direction with the average in the x direction as

expressed by (1.3b) and employing the symmetry of A there results, with

2 _ T
e llyyq/2 = E U1,5+1/2 V1,34 172 >

i=M

T

U, ., AU, .

i,j 1,3 .
i=0

(2.1) ||UII§4.1/2 = llullg_.l/z - A

For dissipative boundary conditions appropriate to the wave equation the

last term on the right-hand side is non-negative and the norm estimate




ol 2, 10 < W2 1,

results, a fact which enables one to conclude convergence for all values

of A as

This scheme is non-dissipative in the interior of D.

indicated below,

Ax + 0, Ay + 0 when solutions are smooth.

As will be

(1.3) is accurate to second order and well-known results

about non-dissipative second order methods indicate that the scheme cannot

provide a monotonic approximation in a neighborhood of a discontinuity of

the solution of (1.1).

known and will not be discussed further in this paper.

Several means of overcoming this problem are

may be eliminated; the

’

In (1.3) either Ui,j+-1/2 or Ui,j— 1/2
result is
(a) RU +RU =7
i+1/2,j i-1/2,3 i,j-1/2
(2.2)
(b) RU +R'U =y
i-1/2,j i-1/2,j i,j+1/2
where
Rt =-% (I+2A)
Thus, with Ui j-1/2 known for a fixed value of j, (2.2a) describes

a two-point boundary value problem to be solved for Ui

determined, (2.2b) then provides values U

for the next step.

i,j+1/2

More directly, by eliminating the values U

.3 with U, .,
J 1,3

as new initial data

i,j+1/2

between two neighboring cells the following box-scheme results:

Ry

(2.3)

i+1/2,

R Ui+ 1/2,j

41 TRU 172, 5+1
+
TRU 12,3




and from which the assertion that the proposed scheme (1.3) is sécond-order
accurate 1s immediately evident.

This discussion can be extended to hyperbolic systems of conservation
laws of the form Ut + Fx + Gy = 0 and for which the approximation method
underlying (1.3) which is described below also indicates a natural operator
splitting technique for resolving the solution as a simple composition of
one-dimensional solutions each of which is described by (1.3). This, and
other aspects of this problem, will be discussed in detail in a separate

paper.

I1I. Cauchy - Riemann Equations

equations to that in which one component of U is prescribed on the

boundary of D, i.e., to the Dirichlet problem for (1.1) when A = (_2 é ).

In order to discuss equation (1.3) in this case it will be convenient

to introduce new variables W(Q) associated with vertex points of a cell

"ij as indicated in Figure 2
Q_1/2,5+1/2 U+ 1/2,5+1/2
T, .
ij
Q. . Q. .
i-1/2,5-1/2 i+1/2,j-1/2
Figure 2
satisfying




2Us3172,5 = "Qus1/2, 541727 Y ¥ Q499 5-172)
(3.1)

20y 54172 =¥ 170 941720 YO 10 51172)

in which case equation (1.3b) is satisfied identically while (1.3a) results
in the box-scheme
+

ROy 41/2,941/2 Yi-1/2,5-1/2)

(3.2)

RO _yy9, 541727 Yi41/2,9-1720 =0 -

To (3.1), (3.2) are to be added (N+M) boundary the conditions BAU==g
now expressed in terms of values of W.

The number of unknown vectors W(Q) occurring in these equations
is (M+1)(N+1). If W(Q) is arbitrarily specified at any point then
equations (3.2) and the (M+N) boundary conditions will yield a determined
system of equations for W(Q) .

The fact that W(Q) may be arbitrarily specified at any point reflects
the fact that the solution of (3.1) is determined only to within an
arbitrary constant vector.

Consider the vertex point Q0 common to the four adjacent cells

w indicated in Figure 3.

13° "141,5, 1,541, Titl, §+41
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Ti41,3 Ti41,35+1
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Figure 3

Using (3.2) the reader may easily verify that
(3.3) 4W(Q0) = W(Ql) +W(Q2) +W(Q3) +W(Q4) .

This represents an approximation to the Laplacian operator rotated
through an angle of m/4 about QO'

This observation implies a maximum principle for W(Q) , hence
uniqueness for U(P) ; familiar related arguments also establish the
(quadratic) convergence of U(P) to the solution of the Cauchy - Riemann
equations as Ax>0, Ay+0. Because of their familiarity they are not
repeated here.

A consequence of (3.3), also, is that the semi-norm

Il * = é [ 0@ -W@) W@ -wEe)

Q'eN(Q)

where N(Q) indicates the diagonal neighbor of Q in a cell, provides
an estimate for W in terms of the boundary data, using the analogue of

Green's theorem.




Equation (3.3) expressed in terms of box variables, originally
introduced to facilitate a proof of the convergence of (1.3), also
suggests effective solution techniques for this problem based upon

known results.

IV. A Motivation

Consider the possibility of developing an approximation method
which applies to the two completely different types of equations
expressed by (1.1). Since the wave equation permits discontinuous
solutions it is natural to consider a method which is consistent with
weak-solution methods. When applied to elliptic equations such mesh
approximation methods should, as well, be expected to converge to the
known strong solution of such problems.

To this end consider the following adaptation of the weak-element
approximation method described in [2]: 1let ¢ denote a side of one of
the elementary rectangular cells 7 which partition D and let 7(0)
be an associated cell of the same dimensions bisected by the side 0.

In each elementary cell 7 with the origin as center let

(4.2) U(x,y,m) = a(m) + (x-yA) b(m)

where a(m), b(m) are parameters yet to be determined; thus U(x,y,T)
is a solution of (3.1) in .
On each associated cell mw(o) let &(c) be smooth and equal to 1
in 7(o) except in a small neighborhood of the boundary where it
vanishes. Considering &={0(0)} as a class of test functions, multiply

(1.1) by &(0) and integrate by parts over a subdomain T(0) of T7(0)

to obtain




(4.3) 0= [ &()(dx-dya)u- [f (@, (0) - ¢, (0)A)Udxdy .
(o) (o)
Thus if g 1is a side common to cells w, ' then the approximations

u,nr) , U@,r") will satisfy (4.3) if

(4.4a) fu(p,mdo = [U(P,n")do
g g

while at a boundary side o

(4.4b) J B,u@,m)-g)dc =0 .
o

In the examples under discussion these conditions provide for a determined
algebraic system of equations for the parameters a(m), b(m)

For the linear approximation described by (4.2), equation (4.3)
implies that the values of the approximation U(P,m) itself is continuous
at the center point of each side 0 of ® . As a result, the values of
the parameters a(m), b(m) occurring in (4.2) may be expressed in terms
of values of U at the center points of the sides of 7. The results
are the difference equations (1.3).

The previous discussion shows that this approximation method
produces convergent approximationé for all values of the mesh parameters
for both the wave equation as well as the Cauchy - Riemann equations.

More generally, this suggests that a more unified approach can be developed
to treat the numerical solution of differential equations without regard

to type.
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